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This paper treats a travelling-wave approach to suppressing vibration of general flexible
structures. This approach aims to minimize all of the reflective waves at actuator positions
located at the structural boundaries. A variation of the transfer matrix method shows the
property that the elastic motion is obtained by superposing the waves travelling in a flexible
structure; this transfer matrix method is based on the finite element method for structural
analysis. Moreover, the method gives the propagation and scattering relations of the waves
in the structure. Since these relations are described by a complex-valued function with
respect to Laplace variable, they are transformed into a real-valued form to design a
controller by a lot of state–space methods. This transformation is given by diagonalizing
the unity transfer matrix into a real-Jordan form. The problem is then formulated as an
Ha optimization problem to find a compensator minimizing the reflective waves at the
actuators. The designed compensator is based only on the scattering relations at the
controller positions and on the sensor-input/controller-output relations. A multispan
flexible beam is used to verify the validity of the present approach. It is numerically shown
that the approach is able to achieve good damping improvement in the closed-loop system.
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1. INTRODUCTION

Control of a flexible structure is one of the main themes in control engineering. The
dynamical model for the flexible structure is derived from a standing wave in many
approaches to solve this problem, whereas travelling-wave approaches are so far limited
to the applications to such simple structures as a flexible beam [1, 2]. Now those
travelling-wave approaches are briefly described. Elastic waves are generated by a typical
force locally applied to the structure, and they might come into a sensor and go out of
an actuator. Since the structural responses are represented by superposing the travelling
waves, the boundary conditions at an actuator might be written as the relation of the
reflective waves with the incident waves and the controller input; this relation is called a
scattering relation. The controller input is then set to be in the output-feedback form,
which leads to the closed-loop relations between the reflective and incident waves.
Moreover, a compensator is selected so as to reduce the effects of the incident waves on
the reflective waves in some sense; this reduction is, for example, conducted by setting the
elements of the closed-loop scattering matrix at zero. Since those approaches depend on
the local structural parts between the sensors and actuators, they can afford to treat such
systems that include unknown or unmodelled structural parts. They, however, assume that
the system should be described by a partial differential equation. Therefore, it would be
difficult to apply the approaches to designing a compensator for complex structures.

In this paper, a travelling-wave approach based on the finite element method is
presented. Since the finite element method can be applied to analyzing dynamics of
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complex structures, the approach does not have the afore-mentioned disadvantage of the
conventional approaches. The finite element method is now used to formulate the transfer
matrix method [3–6]. Moreover, the transfer matrix method is modified to compute the
structural responses along the directions in which the waves travel, and gives the scattering
and transition relations between the travelling waves; those relations are described by a
real-valued function with respect to a Laplace variable in the frequency region. Most of
the optimal control methods do not take into account a complex-valued transfer function
because a realistic system should be described by a real-valued function. Therefore, a
compensator can now be designed by those methods in order to minimize the reflective
waves at the actuators. Moreover, this minimization is formulated as an Ha optimization
problem in this paper. This approach aims to minimize the effects of the incident waves
on the reflective waves at the actuators in the sense that the Ha norm of the closed-loop
scattering matrix is minimum. This can be interpreted as minimizing the worst case H2

norm of the reflective waves when the incident waves are of finite magnitude, and the
design compensator is guaranteed to be a real and causal function. A multispan flexible
beam is used as a dynamical model to exemplify the present approach. The open- and
closed-loop transfer functions are numerically computed to demonstrate the validity of the
designed control system. The results show that good damping improvement is achieved
by the present approach.

2. STRUCTURAL DYNAMICS VIA TRAVELLING WAVES

Structural responses can be viewed as a superposition of the waves travelling in a flexible
structure. The waves scatter at the structural boundaries and are generated by the external
forces acting on the structure. The scattering and generative relations between the waves
are essential to designing a compensator and, in this paper, are obtained by a variation
of the transfer matrix method [3–6] based on the finite element method. The transfer matrix
method is modified to compute the structural responses along the directions in which the
waves travel [3]. Further modification is made on the transfer matrix method to use the
real-Jordan form of the transfer matrix because a state–space formula is used to design
a compensator.

The finite element method is formulated for the ith element of a flexible structure
(Figure 1) as follows:

Zi$ qi

qi+1%=$ fi

−fi+1%, (1)

Figure 1. Finite element formulation for structural analysis.
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with the impedance matrix

Zi =−v2Mi + jvCi +Ki =$z11

z21

z12

z22%, (2)

where Mi , Ci , and Ki are the unity mass, damping, and stiffness matrices, respectively, for
the ith element; the subscript i denotes the element number; the submatrix zij ’s are of the
order p× p with p being a half of the dimension of Zi ; the vectors qi and fi are the
generalized displacement vector and the internal generalized force vector at the ith node.
It should be noted that the present system is now Fourier-transformed into the frequency
domain.

By making use of some algebraic manipulations, equation (1) is rewritten as

$qi+1

fi+1%=Ti$qi

fi% (3)

with

Ti =$ −z−1
12 z11

−z21 + z22z−1
12 z11

z−1
12

−z22z−1
12 %, (4)

where Ti is the transfer matrix, and equations (3) and (4) give the standard transfer matrix
formulation using the finite element method. Moreover, we diagonalize the matrix Ti using
the following transformation (k= i, i+1)

$qk

fk%=Yiwk , (5)

to obtain the diagonal system

wi+1 =Liwi (6)

with

Li =Y−1
i TiYi = diag[l1, l2, . . . , l2p ], (7)

where lj ’s and Yi are the eigenvalues and eigenvectors of the matrix Ti , respectively. Now
we would like to use a property of all of the transfer matrices, that is, there exists a
lp+ i = l−1

i for every eigenvalue lj [6]. This property physically means that each pair of
reciprocal eigenvalues is associated with two wave motions propagating with the same
form in two opposite directions. By making use of the property, equation (6) may be
written as follows:

$bi+1

ai+1%=$Ei

O
O

E−1
i %$bi

ai%, (8)

where Ei = diag[l1, l2, . . . , lp ] and wi =[bT
i aT

i ]T is referred to as a wave vector. The
eigenvalues of Ei are arranged such that their eigenvalues are in ascending order; it can
be shown that =li =E 1 for 1E iE p [6]. Furthermore, since those eigenvalues are so
arranged, the elements of a and b are the complex amplitudes of the waves travelling right
and left, respectively. It might be noted that the travelling directions are determined by
the causality, that is, the transfer functions from the waves at a downstream point to the
waves at an upstream point should be analytic in the right half of the complex plane.
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Now a controller is designed using equations (5) and (8). However, it would be difficult
to apply such standard state–space formulae as Ha control theory to the present system
because the matrices Yi and Ei do not satisfy the following condition:

H*( jv)=H(−jv), (9)

where H( jv) is a transfer function and the superscript * denotes the complex conjugate.
If equation (9) is not satisfied in a system, the system impulse responses take a complex
value and the systems with finite dimensions have a state–space realization via
complex-valued matrices. Since the state–space formulae cannot be applied to the present
system, we transform the matrix Ei into the real-Jordan form as follows:

E	 i =Q	 −1EiQ	 =diag(e1, e2, . . . ), (10)

with

ek =$ak

bk

−bk

ak %, Q	 =diag[Q
 , Q
 , . . . ], and Q
 =$11 j
−j%, (11)

where lk = ak ( jv)+ jbk ( jv) with ak and bk satisfying equation (9) and there exists the
eigenvalue l	 k = ak ( jv)− jbk ( jv) for every lk in the matrix Ei . It might be noted that this
real-Jordan form differs from the usual one with lk and l*k . Moreover, the transformation
yields a new wave vector:

$bn

an%=$Q	O O
Q	 %$b	 nãn%0Q$b	 nãn%, (12)

and the state vector also becomes

$qi

fi%=YiQw̃i 0Y	 i w̃i . (13)

A causal transitional relation of the travelling waves is given by a combination of equations
(8) and (15) as

$b	 i+1

ãi %=$E	 i

O
O
E	 i%$ b	 i

ãi+1%. (14)

Here, the causality is considered using the simplest example in which the waves
propagate through the identical cells labelled from left to right, n through m (nEm), as
shown in Figure 2. By making use of equation (14), the wave vectors are related at the
two cells as follows:

$b	 m+1

a	 n %=$E	 m− n+1

O
O

E	 m− n+1%$ b	 n
ãm+1%. (15)

Figure 2. One-dimensional flexible structure.
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Since the eigenvalues of E	 are less than unity, the elements of (E	 m− n+1)−1 approach infinity
when the total number of elements becomes significantly large. Therefore, the transfer
function E	 −1 cannot be causal when the length of the element is large because it is not
analytic in the right-half complex plane. That is why equation (14) gives a causal relation
between the travelling waves.

Although the transitional relation was obtained in the previous section, a scattering
relation when controller inputs act on a structural boundary is now considered. For
simplicity, a one-dimensional flexible structure is considered, as shown in Figure 2. The
state and wave vectors are related using equation (13) as follows:

$qn

u%=$Mb	 n

Nb	 n

Mãn

Nãn%$b	 nãn%, (16)

where u= fn and submatrices, Mb	 n , Mãn , Nb	 n and Nãn , are introduced which are of the order
p× p. From the second row of equation (16), one obtains

b	 n =Sn ãn +Vnu, (17)

where

Sn =−N−1
b	 n Nãn and Vn =N−1

b	 n . (18)

Equation (17) is called a scatteirng relation, and the structural responses can now be
computed through the use of the transitional and scattering relations. For the convenience
of the following discussion, the relation between a sensor output and the controller input
is considered. Referring again to Figure 2, we let the sensor be at node s (nE s). In the
same manner as the scattering relation, the relation between the state and wave vectors
is obtained:

$yfs%=$Mb	 s

Nb	 s

Mãs

Nãs%$b	 sãs%, (19)

where y= qs , and the first row of equation (19) gives

y=Mb	 sb	 s +Mãs ãs . (20)

Some algebraic manipulations using equations (15), (17) and (20) yield

y= Jãs +Gu, (21)

where

J=Mb	 sE	
s− nSnE	 s− n +Mãs and G=Mb	 sE	

s− nVn . (22)

This input–output relation is used to design a compensator in the following section.

3. CONTROLLER DESIGN

Having presented the scattering and transitional relations for the travelling waves in the
previous section, we shall now proceed to develop an approach to designing a
compensator. This approach is formulated as an Ha optimization problem, and readers
can refer to the Appendix for some mathematical definitions.



y

u

a

b

f

.   .274

For convenience, our discussion is based on the same example in Figure 2. From
equations (15) and (17), the scattering relation might be represented in terms of the incident
waves into the sensors to yield

b	 n =S	 n ãs +Vnu, (23)

where S	 n =SnE	 s− n. We would like to design a compensator which minimizes the reflective
waves b	 n in an Ha sense. In the Ha sense, a compensator is designed to minimize the
worst-case amplitude of b	 n in the frequency region. More specifically, the controlled-output
vector v is first selected as

v=$W1b	 n
W2u%=$W1S	 n

O
W1Vn

W2 %$ãs

u%, (24)

where W1 and W2 are weighting functions for a design trade-off between b	 n and u in the
frequency region; this trade-off is due to controller limitations. The Ha controller design
aims to minimize the Ha norm of the closed-loop transfer function D from ãs to v; the
Ha norm provides the worst-case >v>2 if ãs is normalized as follows:

>D>a =sup (>v>2 = >Dãs>2: >ãs>2 E 1), (25)

where >v>2
2 = >W1b	 n>2

2 + >W2u>2
2. Moreover, the transfer function D is explicitly written as

D=$W1S'n
O %+$W1Vn

W2 %$[I−GP]−1J, (26)

where the open-loop plant is given by equation (21) and the control input u is limited to
the form u=Py; P is a compensator. The problem is now to find the compensator P to
minimize >D>a and solve by a state–space formula [8]. We would like to rewrite the present
problem in terms of notation in Ha control theory:

$vy%= &W1S'n
O
J

W1Vn

W2

G '$ãs

u%. (27)

Note that J does not satisfy the causality if we use ãn in place of ãs in equation (27). The
preceding approach has already been applied to the wave-based controller design in a
continuous system [7]. Note that the closed-loop stability has not been proved by using
this controller design approach.

Figure 3. Multispan flexible beam example.
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4. MULTISPAN FLEXIBLE BEAM EXAMPLE

A 10-span flexible beam (Figure 3) is used to exemplify the present approach. The
clamped–free beam is elastically constrained at nine uniformly spaced interior supports.
The validity of the present approach is verified by comparing the open- and closed-loop
transfer functions in the frequency region. Moreover, the resultant travelling-wave
dynamics and the designed compensator are compared with those of a uniform flexible
beam.

In the present example, the cross-sectional state vectors q and f are defined as q=[ y u]T

and f=[m f ]T, respectively; y is the lateral displacement, u the slope, m the internal
bending moment, and f the internal shear force. Now the unity mass and stiffness matrices
for a beam element are used as follows:

156 22l 54 −13l

22l 4l 2 13l −3l 2

G
G

G

K

k

G
G

G

L

l

M=(rAl/420)
54 13l 156 −22l

, (28)

−13l −3l 2 −22l 4l 2

and

6 3l −6 3l

3l 2l 2 −3l l 2

G
G

G

K

k

G
G

G

L

l

K=(2EI(1+ jo)/l3)
−6 −3l 6 −3l

, (29)

3l l 2 −3l 2l 2

where rA is the mass per unit length, l the length of the unity element, and EI the bending
rigidity of the beam; the structural hysteretic damping is used with the imaginary part of
the rigidity, o=1·0×10−7; the unity damping matrix C is the null matrix; all of the
physical parameters are set to be those of reference [4], that is, the beam length is 4·0 m,
EI=2·0×106 Nm2, and rA=8·9×101 kg/m; the beam is divided into ten elements with
equal length. Moreover, the beam is elastically constrained at each support, and the
transfer matrix associated with the support is written as

1 0 0 0

0 1 0 0G
G

G

K

k

G
G

G

L

l

F=
0 −k2 1 0

, (30)

−k1 0 0 1

where k1 and k2 are the deflectional and rotational spring-constants of an elastic support,
respectively; k1 =1·0×105 N/m and k2 =1·0×105 N/rad.

Equations (2), (4), (28) and (29) are combined to give the transfer matrix T for a beam
element; the matrix T is transformed into the real Jordan form L to give

$b	 i+1

ãi+1%=L$b	 iãi%, (31)

where L=Y	 −1TY	 . Figure 4 shows frequency responses of the eigenvalues of the transfer
matrix T; only the first two eigenvalues are shown in this figure, and they are not more
than unity in magnitude, as shown in the previous section. Moreover, the same
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Figure 4. The transfer functions of the eigenvalues of the transfer matrix (l1: solid, l2: dashed).

transformation is applied to the matrix F to yield the travelling-wave dynamics at each
support:

$b	 j+1

ãj+1%=R$b	 jãj%, (32)

where R=Y	 −1FY	 . It might be noted that the travelling waves could be reflected and
transmitted at each support because the matrix R does not take a diagonal form.

Now the scattering relation is obtained at the left end; this end is modelled as a beam
element. Since a force actuator is now located at this end, the scattering relation is given
by equations (17) and (18) as

b	 0 =S0ã0 +V0u (33)

where

S0 =−N−1
b	 0 Nã0 and V0 =N−1

b	 0 [0 1]T. (34)

Since a displacement sensor is collocated with a force sensor at the free end, the
input–output relation is obtained using equations (21) and (22):

y= Jãs +Gu, (35)

where

J=[1 0](Mb	 0S0 +Mã0) and G=[1 0]Mb	 0V0. (36)
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Figure 5. The transfer functions of the elements of the scattering matrix.

In fact, these two relations are numerically obtained as frequency response data (Figure
5), and the frequency responses are fitted with a curve to yield a model of equations (33)
and (35).

b	 0 =$ 1·0
10−13s3

2·0
−1·0%ã0 +$ 5·0×10−4s−3/2

−4·0×10−17s3/2%u (37)

and

y=1·0×10−3s−3/2u+[0·4 0·4]ã0, (38)

where the deviations are significantly small from the frequency response data. The
multispan beam is modelled as a beam element at the left end. If the two relations are now
compared with those using a uniform flexible beam, it is found that equation (37) contains
significantly smaller terms in place of zeros; the uniform flexible beam is modelled as a
Euler–Bernoulli beam. Those small terms are now set to zero because they are smaller than
the other terms by about 40 dB at 103 Hz. The first eight natural frequencies are below
this frequency, whereas the beam now contains ten elements. Therefore, the model is less
reliable over the frequency region above 103 Hz. An optimal compensator is obtained
analytically in the same manner as the continuous system [7] as follows:

P=−2·3×103 s3/2. (39)

Figure 6 shows the open- and closed-loop transfer function from a disturbance force
input to the displacement sensor at the free end of the beam. It is shown that good
damping improvement has been achieved by the designed controller. Note that the first
natural frequency of the present system deviates by 16% from that of a uniform flexible
beam.
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Figure 6. The open- (dashed) and closed-loop (solid) transfer functions from f to y.

5. CONCLUSIONS

A variation of the transfer matrix method is used to show that elastic motion is a
superposition of the waves travelling in a flexible structure. This transfer function method
is based on the finite element method and diagonalizes the unity transfer matrix into the
real-Jordan form. Moreover, the transitional and scattering relations between the waves
are obtained through the use of this method; these relations are used to design a controller.
The problem is formulated as an Ha optimization problem to find a compensator
minimizing the reflective waves at the actuators subject to the constraints on the
controller input. A multispan flexible beam is used to exemplify the present approach.
The clamped–free beam is elastically constrained at uniformly spaced interior supports.
The open- and closed-loop transfer function from a disturbance force input is compared
to the displacement sensor at the free end of the beam. The result shows that good damping
improvement has been achieved by the designed controller.
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APPENDIX

We define >A>a (the Ha-norm of a matrix A) as follows:

>A>a =max
v

s̄(A( jv)), (A1)

where s̄ denotes the largest singular value, and >A>2 (the H2-norm of A) is given by

>A>2 =6(1/2p) g
a

−a

trace[AH( jv)A( jv)] dv7
1/2

, (A2)

where the superscript H denotes the Hermite conjugate transpose. Moreover, we show the
relation between the Ha- and H2-norms:

>A>2 = sup (>Ax>2: >x>2 E 1). (A3)


